题目内容
如图,在平面直角坐标系中,直线AB分别与x轴,y轴相交于A,B两点,OA,OB的长分别是方程x2﹣14x+48=0的两根,且OA<OB.
(1)求点A,B的坐标.
(2)过点A作直线AC交y轴于点C,∠1是直线AC与x轴相交所成的锐角,sin∠1=,点D在线段CA的延长线上,且AD=AB,若反比例函数的图象经过点D,求k的值.
(3)在(2)的条件下,点M在射线AD上,平面内是否存在点N,使以A,B,M,N为顶点的四边形是邻边之比为1:2的矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
(1)A(6,0),B(0,8)。
(2)k=84。
(3)存在。点N的坐标为(4,11)或(16,20)。
解析试题分析:(1)解一元二次方程,求得OA、OB的长度,得到点A、B的坐标。
解:解方程x2﹣14x+48=0,得:x1=6,x2=8。
∵OA,OB的长分别是方程x2﹣14x+48=0的两根,且OA<OB,∴OA=6,OB=8。
∴A(6,0),B(0,8)。
(2)如答图所示,作辅助线,构造全等三角形△AOB≌△DEA,求得点D的坐标;进而由题意,求出k的值。
如答图所示,过点D作DE⊥x轴于点E.
在Rt△AOB中,OA=6,OB=8,
由勾股定理得:AB=10。
∴。
∵sin∠1=,∴∠OBA=∠1。
∵∠OBA+∠OAB=90°,∠1+∠ADE=90°,
∴∠OAB=∠ADE。
在△AOB与△DEA中,∵∠OBA=∠1,AB=AD,∠OAB=∠ADE,
∴△AOB≌△DEA(ASA)。∴AE=OB=8,DE=OA=6。∴OE=OA+AE=6+8=14。
∴D(14,6)。
∵反比例函数的图象经过点D,∴k=14×6=84。
(3)如答图所示,可能存在两种情形:
如图所示,若以A,B,M,N为顶点的四边形是邻边之比为1:2的矩形,
①当AB:AM1=2:1时,
过点M1作M1E⊥x轴于点E,
易证Rt△AEM1∽Rt△BOA,
∴,即
∴AE=4,M1E=3。
过点N1作N1F⊥y轴于点F,易证Rt△N1FB≌Rt△AEM1,
∴N1F=AE=4,BF=M1E=3,∴OF=OB+BF=8+3=11。
∴N1(4,11)。
②当AB:AM2=1:2时,同理可求得:N2(16,20)。
综上所述,存在满足条件的点N,点N的坐标为(4,11)或(16,20)。
一次函数y=kx+4的图象经过点(-3,-2),则
(1)求这个函数表达式;并画出该函数的图象.
(2)判断(-5,3)是否在此函数的图象上;
(3)求把这条直线沿x轴向右平移1个单位长度后的函数表达式.
(2013年四川广安8分)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.
| 空调 | 彩电 |
进价(元/台) | 5400 | 3500 |
售价(元/台) | 6100 | 3900 |
(1)试写出y与x的函数关系式;
(2)商场有哪几种进货方案可供选择?
(3)选择哪种进货方案,商场获利最大?最大利润是多少元?
漳州三宝之一“水仙花”畅销全球,某花农要将规格相同的800件水仙花运往A,B,C三地销售,要求运往C地的件数是运往A地件数的3倍,各地的运费如下表所示:
| A地 | B地 | C地 |
运费(元/件) | 20 | 10 | 15 |
(2)若总运费不超过12000元,最多可运往A地的水仙花多少件?
如图,已知二次函数 =,当<<时, 随的增大而增大,则实数a的取值范围是 ( )
A.> | B.<≤ | C.>0 | D.<< |
抛物线可以由抛物线平移得到,则下列平移过程正确的是
A.先向左平移2个单位,再向上平移3个单位 |
B.先向左平移2个单位,再向下平移3个位 |
C.先向右平移2个单位,再向下平移3个单位 |
D.先向右平移2个单位,再向上平移3个单位 |