题目内容

已知:如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边△BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,若AB=3,AC=2.
(1)求证:点A、C、E在一条直线上;
(2)求∠BAD的度数;
(3)求AD的长.

(1)证明:∵△BCD为等边三角形,
∴∠3=∠4=60°,DC=DB,
∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,
∴∠5=∠1+∠4=∠1+60°,
∴∠2+∠3+∠5=∠2+∠1+120°,
∵∠BAC=120°,
∴∠1+∠2=180°-∠BAC=60°,
∴∠2+∠3+∠5=60°+120°=180°,
∴点A、C、E在一条直线上;

(2)解:∵点A、C、E在一条直线上,
而△ABD绕着点D按顺时针方向旋转60°后得到△ECD,
∴∠ADE=60°,DA=DE,
∴△ADE为等边三角形,
∴∠DAE=60°,
∴∠BAD=∠BAC-∠DAE=120°-60°=60°,;

(3)解:∵点A、C、E在一条直线上,
∴AE=AC+CE,
∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,
∴CE=AB,
∴AE=AC+AB=2+3=5,
∵△ADE为等边三角形,
∴AD=AE=5.
分析:(1)根据等边三角形的性质由△BCD为等边三角形得到∠3=∠4=60°,DC=DB,再根据旋转的性质得到∠5=∠1+∠4=∠1+60°,则∠2+∠3+∠5=∠2+∠1+120°,再根据三角形内角和定理得到
∠1+∠2=180°-∠BAC=60°,于是∠2+∠3+∠5=60°+120°=180°,即可得到点A、C、E在一条直线上;
(2)由于点A、C、E在一条直线上,△ABD绕着点D按顺时针方向旋转60°后得到△ECD,则∠ADE=60°,DA=DE,得到△ADE为等边三角形,则∠DAE=60°,然后利用∠BAD=∠BAC-∠DAE计算即可;
(3)由于点A、C、E在一条直线上,则AE=AC+CE,根据旋转的性质得到CE=AB,则AE=AC+AB=2+3=5,而△ADE为等边三角形,则AD=AE=5.
点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网