题目内容
8、如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为( )
分析:由线段垂直平分线的性质,可得AD=CD,然后,根据三角形的周长和等量代换,即可解答;
解答:解:∵DE是△ABC中边AC的垂直平分线,
∴AD=CD,
∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,
∵BC=18cm,AB=10cm,
∴△ABD的周长=18cm+10cm=28cm.
故选B.
∴AD=CD,
∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,
∵BC=18cm,AB=10cm,
∴△ABD的周长=18cm+10cm=28cm.
故选B.
点评:本题主要了考查线段的垂直平分线的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.
练习册系列答案
相关题目
已知:如图,DE是△ABC的中位线,若AD=4,AE=5,BC=12,则△ADE的周长为( )
A、7.5 | B、15 | C、30 | D、24 |
如图,DE是△ABC的中位线,则△ADE和四边形BCED的面积之比为( )
A、1:2 | B、1:3 | C、1:4 | D、以上都不对 |
如图,DE是△ABC的中位线,FG是梯形BCED的中位线,若BC=16cm,则FG的长是( )
A、6 | B、8 | C、10 | D、12 |