题目内容

通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.

原题:图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.

(1)思路梳理

∵AB=CD,

∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.

∵∠ADC=∠B=90°,

∴∠FDG=180°,点F、D、G共线.

根据________,易证△AFG≌________,得EF=BE+DF.

(2)类比引申

图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系________时,仍有EF=BE+DF.

(3)联想拓展

图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网