题目内容

如图,已知,正方形纸片ABCD的边长为4,点P在BC边上,BP=1,点E在AB边上,且∠BPE=60°,沿PE翻折△EBP得到△EB′P. F是CD边上一点,沿PF翻折△FCP得到△FC′P,使点Cˊ落在射线PBˊ上.

(1)求证:EB′// C′F;
(2)连接B′F、C′E,求证:四边形EB′F C′是平行四边形.
(1)根据正方形的性质可得∠B=∠C=90°,根据折叠的性质可得∠EB′P=∠B=90°即∠EB′C′=90°,∠FC′P=∠C=90°,即可得到∠EB′C′=∠FC′P,从而证得结论;
(2)先解Rt△EBP求得BE的长,再根据折叠的性质可得∠FPC=30°,根据含30°的直角三角形的性质可证得BE=FC即EB′= FC′,再结合EB′// C′F即可证得结论.

试题分析:(1)∵正方形ABCD,
∴∠B=∠C=90°.
∵沿PE翻折△EBP得到△EB′P,
∴∠EB′P=∠B=90°即∠EB′C′=90°.
∵沿PF翻折△FCP得到△FC′P,
∴∠FC′P=∠C=90°.
∴∠EB′C′=∠FC′P.
∴EB′// C′F;
(2)在Rt△EBP中,
∵∠BPE=60°,BP=1,
∴BE=.
∵沿PE翻折△EBP得到△EB′P,沿PF翻折△FCP得到△FC′P,
∴∠FPC=30°
∵BC=4,BP=1,
∴PC=3.
∴FC=
∴BE=FC即EB′= FC′
又∵EB′// C′F,
∴四边形EB′F C′是平行四边形.
点评:特殊四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网