题目内容
如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数(x≠0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P3A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S1+S2+S3+S4+S5的值为( )
A.2 | B. | C.3 | D. |
B
试题分析:由于过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,可先由|k|依次表示出图中各阴影三角形的面积,再相加即可得到面积的和.
解:由于OA1=A1A2=A2A3=A3A4=A4A5,S1=|k|,S2=|k|,S3=|k|,S4=|k|,S5=|k|;
则S1+S2+S3+S4+S5=(++++)|k|=×2==.
故选B.
点评:本题灵活考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.
练习册系列答案
相关题目