题目内容
【题目】在平面直角坐标系中,将一块等腰直角三角板(△ABC)按如图所示放置,若AO=2,OC=1,∠ACB=90°.
(1)直接写出点B的坐标是 ;
(2)如果抛物线l:y=ax2﹣ax﹣2经过点B,试求抛物线l的解析式;
(3)把△ABC绕着点C逆时针旋转90°后,顶点A的对应点A1是否在抛物线l上?为什么?
(4)在x轴上方,抛物线l上是否存在一点P,使由点A,C,B,P构成的四边形为中心对称图形?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】(1)点B的坐标为(3,1);(2)y=x2﹣x﹣2;(3)点A1在抛物线上;理由见解析;(4)存在,点P(﹣2,1).
【解析】
(1)首先过点B作BD⊥x轴,垂足为D,通过证明△BDC≌△COA即可得BD=OC=1,CD=OA=2,从而得知B坐标;
(2)利用待定系数法,将B坐标代入即可求得;
(3)画出旋转后的图形,过点作x轴的垂线,构造全等三角形,求出的坐标代入抛物线解析式即可进行判断;
(4)由抛物线的解析式先设出P的坐标,再根据中心对称的性质 与线段中点的公式列出方程求解即可。
(1)如图1,过点B作BD⊥x轴,垂足为D,
∵∠BCD+∠ACO=90°,∠AC0+∠OAC=90°,
∴∠BCD=∠CAO,
又∵∠BDC=∠COA=90°,CB=AC,
在△BDC和△COA中:
∵∠BDC=∠COA,∠BCD=∠CAO,CB=AC,
∴△BDC≌△COA(AAS),
∴BD=OC=1,CD=OA=2,
∴点B的坐标为(3,1);
(2)∵抛物线y=ax2﹣ax﹣2过点B(3,1),
∴1=9a﹣3a﹣2,
解得:a=,
∴抛物线的解析式为y=x2﹣x﹣2;
(3)旋转后如图1所示,过点A1作A1M⊥x轴,
∵把△ABC绕着点C逆时针旋转90°,
∴∠ABC=∠A1BC=90°,
∴A1,B,C共线,
在三角形BDC和三角形A1CM中:
∵∠BDC=∠A1MC=90°,∠BCD=∠A1CM,A1C=BC,
∴△BDC≌△A1CM
∴CM=CD=3﹣1=2,A1M=BD=1,
∴OM=1,
∴点A1(﹣1,﹣1),
把点x=﹣1代入y=x2﹣x﹣2,
y=﹣1,
∴点A1在抛物线上.
(4)设点P(t, t2﹣t﹣2),
点A(0,2),点C(1,0),点B(3,1),
若点P和点C对应,由中心对称的性质和线段中点公式可得:
,,
无解,
若点P和点A对应,由中心对称的性质和线段中点公式可得:
,,
无解,
若点P和点B对应,由中心对称的性质和线段中点公式可得:
,,
解得:t=﹣2,
t2﹣t﹣2=1
所以:存在,点P(﹣2,1).