题目内容
【题目】如图,AB是的直径,C点在上,连接AC,的平分线交于点D,过点D作交AC的延长线于点E.
(1)求证:DE是的切线;
(2)若AB=10,,连接CD,求CD的长.
【答案】(1)详见解析;(2)
【解析】
(1)连接OD,欲证明DE是的切线,只要证明即可.
(2)过点O作于点F,只要证明四边形OFED是矩形即可得到DE=OF,在中利用勾股定理求出OF,然后根据切割线定理结论得到结论.
(1)连接OD,
∵AD是∠BAC的平分线,
∴∠OAD=∠DAE.
∵OA=OD,
∴∠OAD=∠ODA.
∴∠ODA=∠DA E.
∴OD∥AE.
∵DE⊥AC,
∴DE⊥OD.
∴DE是⊙O的切线;
(2)连接AC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵AB=10,,
∴BC=8,
∴AC=6,
过点O作OF⊥AC于点F,
∴AF=CF=3,
,
∵∠OFE=∠DEF=∠ODE=90°,
∴四边形OFED是矩形,
∴DE=OF=4,
∵DE是的切线,
∴,
∴CE=2,
∴.
练习册系列答案
相关题目
【题目】有这样一个问题:探究函数的图象与性质.
小东根据学习函数的经验,对函数的图象与性质进行了探究.
下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值,求m的值;
x | … | 1 | 2 | 3 | 4 | … | |||||||
y | … | m | … |
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是,结合函数的图象,写出该函数的其它性质(一条即可) .
(5)根据函数图象估算方程的根为 .(精确到0.1)