题目内容
【题目】为增强学生的身体素质,教育行政部门规定学生平均每天户外活动的时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查了多少名学生?
(2)本次调查中,户外活动时间为0.5小时的学生有多少名?并补全下面的两幅统计图;
(3)如果某校共有1200名学生,请你估计该校学生中户外活动时间为2小时的学生有多少名?
【答案】(1)80名;(2)16人,图见解析;(3)180名
【解析】
(1)由总数=某组频数÷频率计算;
(2)户外活动时间为0.5小时的人数=总数×20%;补全图形即可;
(3)首先算出户外活动时间为2小时的学生所占的百分比,然后即可得解.
(1)(名)
答:在这次调查中共调查了80名学生.
(2)(人)
补图如下:
(3)(名)
答:估计该校学生中户外活动时间为2小时的学生大约有180名.
【题目】一般地,对于已知一次函数y1=ax+b,y2=cx+d(其中a,b,c,d为常数,且ac<0),定义一个新函数y=,称y是y1与y2的算术中项,y是x的算术中项函数.
(1)如:一次函数y1=x﹣4,y2=﹣x+6,y是x的算术中项函数,即y=.
①自变量x的取值范围是 ,当x= 时,y有最大值;
②根据函数研究的途径与方法,请填写下表,并在图1中描点、连线,画出此函数的大致图象;
x | 8 | 9 | 10 | 12 | 13 | 14 | 16 | 17 | 18 |
y | 0 | 1.2 | 1.6 |
| 2.04 | 2 |
| 1.2 | 0 |
③请写出一条此函数可能有的性质 ;
(2)如图2,已知一次函数y1=x+2,y2=﹣2x+6的图象交于点E,两个函数分别与x轴交于点A,C,与y轴交于点B,D,y是x的算术中项函数,即y=.
①判断:点A、C、E是否在此算术中项函数的图象上;
②在平面直角坐标系中是否存在一点,到此算术中项函数图象上所有点的距离相等,如果存在,请求出这个点;如果不存在,请说明理由.