ÌâÄ¿ÄÚÈÝ
£¨1£©Èôa¡¢bΪʵÊý£¬ÇÒb=
-10£¬Çóa+bµÄÁ¢·½¸ù£®
£¨2£©ÎÒÃÇÔÚѧϰ¡°ÊµÊý¡±Ê±£¬»ÁËÕâÑùÒ»¸öͼ£¬¼´ÒÔÊýÖáÉϵĵ¥Î»³¤Îª¡°1¡±µÄÏ߶Î×÷Ò»¸öÕý·½ÐΣ¬È»ºóÒÔÔµãOΪԲÐÄ£¬Õý·½ÐεĶԽÇÏß³¤Îª°ë¾¶»»¡½»ÊýÖáÓÚµãA£¬Çë¸ù¾ÝͼÐλشðÏÂÁÐÎÊÌ⣺
¢ÙÏ߶ÎOAµÄ³¤¶ÈÊÇ
£®
¢ÚÕâÖÖÑо¿ºÍ½â¾öÎÊÌâµÄ·½Ê½£¬ÌåÏÖÁË
£¨½«ÏÂÁзûºÏµÄÑ¡ÏîÐòºÅÌîÔÚºáÏßÉÏ£©
A£®ÊýÐνáºÏ B£®¹éÄÉ C£®»»Ôª D£®ÏûÔª£®
| ||||
a+2 |
£¨2£©ÎÒÃÇÔÚѧϰ¡°ÊµÊý¡±Ê±£¬»ÁËÕâÑùÒ»¸öͼ£¬¼´ÒÔÊýÖáÉϵĵ¥Î»³¤Îª¡°1¡±µÄÏ߶Î×÷Ò»¸öÕý·½ÐΣ¬È»ºóÒÔÔµãOΪԲÐÄ£¬Õý·½ÐεĶԽÇÏß³¤Îª°ë¾¶»»¡½»ÊýÖáÓÚµãA£¬Çë¸ù¾ÝͼÐλشðÏÂÁÐÎÊÌ⣺
¢ÙÏ߶ÎOAµÄ³¤¶ÈÊÇ
2 |
2 |
¢ÚÕâÖÖÑо¿ºÍ½â¾öÎÊÌâµÄ·½Ê½£¬ÌåÏÖÁË
A
A
µÄÊýѧ˼Ïë·½·¨£®£¨½«ÏÂÁзûºÏµÄÑ¡ÏîÐòºÅÌîÔÚºáÏßÉÏ£©
A£®ÊýÐνáºÏ B£®¹éÄÉ C£®»»Ôª D£®ÏûÔª£®
·ÖÎö£º£¨1£©ÓÉÌâÒâµÃa2-4¡Ý0£¬4-a2¡Ý0£¬¹Êa2-4=0£¬ÓÖa+2¡Ù0£¬¿ÉÇó³öaµÄÖµ£¬¼Ì¶øµÃ³öbµÄÖµ£¬½«aºÍbµÄÖµ´úÈëa+b£¬ÔÙ¸ù¾ÝÁ¢·½¸ùµÄ¸ÅÄîÇó½â¼´¿É£»
£¨2£©¢ÙÊ×Ïȸù¾Ý¹´¹É¶¨ÀíÇó³öÏ߶ÎOBµÄ³¤¶È£¬È»ºó½áºÏÊýÖáµÄ֪ʶ¼´¿ÉÇó½â£»
¢Ú¸ù¾ÝËùѧµÄÊýѧ˼Ïë·½·¨²¢½áºÏÌâÒâ¼´¿ÉÇó½â£®
£¨2£©¢ÙÊ×Ïȸù¾Ý¹´¹É¶¨ÀíÇó³öÏ߶ÎOBµÄ³¤¶È£¬È»ºó½áºÏÊýÖáµÄ֪ʶ¼´¿ÉÇó½â£»
¢Ú¸ù¾ÝËùѧµÄÊýѧ˼Ïë·½·¨²¢½áºÏÌâÒâ¼´¿ÉÇó½â£®
½â´ð£º½â£º£¨1£©¡ßa2-4¡Ý0£¬4-a2¡Ý0£¬
¡àa2-4=0£¬
ÓÖa+2¡Ù0£¬
¡àa=2£»
b=-10£¬
¡àa+b=-8£¬
¹Êa+bµÄÁ¢·½¸ùΪ£º-2£®
£¨2£©¢Ù¡ßOB2=12+12=2£¬
¡àOB=
£¬
¡àOA=OB=
£»
¢ÚA£®?
¹Ê´ð°¸Îª£º¢Ù
£»¢ÚA£®
¡àa2-4=0£¬
ÓÖa+2¡Ù0£¬
¡àa=2£»
b=-10£¬
¡àa+b=-8£¬
¹Êa+bµÄÁ¢·½¸ùΪ£º-2£®
£¨2£©¢Ù¡ßOB2=12+12=2£¬
¡àOB=
2 |
¡àOA=OB=
2 |
¢ÚA£®?
¹Ê´ð°¸Îª£º¢Ù
2 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˹´¹É¶¨Àí¼°ÊµÊýÓëÊýÖáÖ®¼äµÄ¶¨Òå¹Øϵ£¬´ËÌâ×ÛºÏÐÔ½ÏÇ¿£¬²»½öÒª½áºÏͼÐΣ¬»¹ÐèÒªÊìϤƽ·½¸ùµÄ¶¨Ò壮ҲҪÇóѧÉúÁ˽âÊýÐνáºÏµÄÊýѧ˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Èôa¡¢bΪʵÊý£¬ÇÒÂú×ã(a-1)2+
=0£¬Ôò
+
+
+¡+
=£¨¡¡¡¡£©
b-2 |
1 |
ab |
1 |
(a+1)(b+1) |
1 |
(a+2)(b+2) |
1 |
(a+2008)(b+2008) |
A¡¢
| ||
B¡¢
| ||
C¡¢
| ||
D¡¢
|