题目内容

(2012•鄂尔多斯)如图,将两张长为4,宽为1的矩形纸条交叉并旋转,使重叠部分成为一个菱形.旋转过程中,当两张纸条垂直时,菱形周长的最小值是4,那么菱形周长的最大值是
17
2
17
2
分析:作出图形,确定当两矩形纸条有一条对角线互相重合时,菱形的周长最大,设菱形的边长为x,表示出AB,然后利用勾股定理列式进行计算求出x,再根据菱形的四条边都相等解答.
解答:解:如图,菱形的周长最大,
设菱形的边长AC=x,则AB=4-x,
在Rt△ABC中,AC2=AB2+BC2
即x2=(4-x)2+12
解得x=
17
8

所以,菱形的最大周长=
17
8
×4=
17
2

故答案为:
17
2
点评:本题考查了菱形的性质,勾股定理的应用,确定出菱形的周长最大时的位置是解题的关键,作出图形更形象直观.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网