题目内容
如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若A点的坐标为(-1,0),则点C的坐标为 .
分析:先连接OE,由于正六边形是轴对称图形,并设EF交Y轴于G,那么∠GOE=30°;在Rt△GOE中,则GE=,OG= .即可求得E的坐标,和E关于Y轴对称的F点的坐标,其他坐标类似可求出.
解:连接OE,由正六边形是轴对称图形知:
在Rt△OEG中,∠GOE=30°,OE=1.
∴GE=,OG=∴A(-1,0),B(-,-),C(,-)D(1,0),E(,),F(-,).
故答案为:(,-)
解:连接OE,由正六边形是轴对称图形知:
在Rt△OEG中,∠GOE=30°,OE=1.
∴GE=,OG=∴A(-1,0),B(-,-),C(,-)D(1,0),E(,),F(-,).
故答案为:(,-)
练习册系列答案
相关题目