题目内容
【题目】已知:如图,点C为线段AB上一点,△ACM, △CBN都是等边三角形,AM=AC=CM,BC=CN=BN,∠ACM=∠BCN=60°,AN交MC于点E,BM交CN于点F.
(1)求证:AN=BM;
(2)求证:判断△CEF形状
【答案】(1)证明见解析;(2)△CEF是等边三角形,理由见解析.
【解析】
(1)由等边三角形可得其对应线段相等,对应角相等,进而可由SAS得到△ACN≌△MCB,结论得证;
(2)由(1)中的全等可得∠CAN=∠CMB,进而得出∠MCF=∠ACE,由ASA得出△CAE≌△CMF,即CE=CF,又ECF=60°,所以△CEF为等边三角形.
(1)∵△ACM,△CBN是等边三角形,
∴AC=MC,BC=NC,∠ACM=∠NCB=60°,
∴∠ACM+∠MCN=∠NCB+∠MCN,即∠ACN=∠MCB,
在△ACN和△MCB中, ,
∴△ACN≌△MCB(SAS),
∴AN=BM;
(2)△CEF是等边三角形,
理由:∵△CAN≌△CMB,
∴∠CAN=∠CMB,
又∵∠MCF=180°-∠ACM-∠NCB=180°-60°-60°=60°,
∴∠MCF=∠ACE,
在△CAE和△CMF中,,
∴△CAE≌△CMF(ASA),
∴CE=CF,
∴△CEF为等腰三角形,
又∵∠ECF=60°,
∴△CEF为等边三角形.
练习册系列答案
相关题目