题目内容

【题目】如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°.点D是圆上一动点,DE∥ABCA的延长线于点E,连接CD,交AB于点F.

(1)如图1,当DE⊙O相切时,求∠CFB的度数;

(2)如图2,当点FCD的中点时,求△CDE的面积.

【答案】(1)75°;(2).

【解析】

(1)由题意可求∠AOD=90°,即可求∠C=45°,即可求∠CFB的度数;
(2)连接OC,根据垂径定理可得AB⊥CD,利用勾股定理.以及直角三角形30度性质求出CD、DE即可.

解:(1)如图:连接OD

DE与⊙O相切

∴∠ODE=90°

ABDE

∴∠AOD+ODE=180°

∴∠AOD=90°

∵∠AOD=2C

C=45°

∵∠CFB=CAB+C

∴∠CFB=75°

(2)如图:连接OC

AB是直径,点FCD的中点

ABCD,CF=DF,

∵∠COF=2CAB=60°,

OF=OC=,CF= OF=

CD=2CF= ,AF=OA+OF=

AFAD,F点为CD的中点,

DECD,AF为△CDE的中位线,

DE=2AF=3,

SCED×3×

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网