题目内容
【题目】在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,测得CB=2.5千米,CH=2千米,HB=1.5千米.
(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;
(2)求原来的路线AC的长.(精确到0.01)
【答案】(1)是,见解析;(2)2.08千米
【解析】
(1)由题意直接根据勾股定理的逆定理解答即可;
(2)由题意直接根据勾股定理解答即可.
解:(1)是.理由如下:
在△CHB中,CB=2.5,CH=2,HB=1.5,
∵CH2+HB2=22+1.52=6.25,CB2=2.52=6.25,
∴CH2+HB2=CB2,
∴CH⊥AB,
故CH是从村庄C到河边的最近路;
(2)设AC=x千米,则AB=AC=x千米,AH=x﹣1.5(千米)
在Rt△AHC中,由勾股定理得:AH2+HC2=AC2
∴x2=(x﹣1.5)2+22
解得:x≈2.08
答:原来的路线AC的长约为2.08千米.
练习册系列答案
相关题目