题目内容
【题目】如图,点D是等边△ABC内一点,将△DBC绕点B旋转到△EBA的位置,则∠EBD的度数是( )
A. 45°B. 60°C. 90°D. 120°
【答案】B
【解析】
由将△DBC绕点B旋转到△EBA的位置,即可得△DBC≌△EBA,根据全等三角形的性质可得∠ABE=∠CBD,又由△ABC是等边三角形,可得∠ABC=60°,继而由∠EBD=∠ABE+∠ABD=∠CBD+∠ABD=∠ABC,求得∠EBD的度数.
解:∵将△DBC绕点B旋转到△EBA的位置,
∴△DBC≌△EBA,
∴∠ABE=∠CBD,
∵△ABC是等边三角形,
∴∠ABC=60°,
∴∠EBD=∠ABE+∠ABD=∠CBD+∠ABD=∠ABC=60°.
故选B.
练习册系列答案
相关题目
【题目】今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.
评估成绩n(分) | 评定等级 | 频数 |
90≤n≤100 | A | 2 |
80≤n<90 | B | |
70≤n<80 | C | 15 |
n<70 | D | 6 |
根据以上信息解答下列问题:
(1)求m的值;
(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)
(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.