题目内容
【题目】如图,在△ABC中,AB=2,BC=4,其两条外角平分线AD、CD交于点D,且∠ADC=45°,连接BD交AC于点P,过点P作PE⊥AC交BC于点F,交AB的延长线于点E.
(1)求证:∠ABC=90° ;
(2)求S△PFC:S△PBF的值.
【答案】(1)见解析;(2).
【解析】
(1)设∠BAC=,∠ACB=,然后分别表示出∠DAC和∠DCA,利用三角形内角和可求出,即可得证;
(2)由角平分线的性质易得BD平分∠ABC,过P作PG⊥BD,易证△PBE≌△PGC,然后证明△PCF≌△PEA,可得CF=AE,设BF=x,则CF=AE=4-x,可得BE=2-x,由BF与BE的比例关系可解出x,得到BF与FC的比例关系即为面积比.
解:(1)设∠BAC=,∠ACB=,
∵AD、CD为△ABC的外角平分线,
∴∠DAC=
∠DCA=
在△ACD中,∠DAC+∠ACD+∠ADC=180°,
即
∴
∴∠ABC=
(2)如图所示,过D作DN⊥AB于点N,DM⊥BC于点M,DH⊥AC于点H,
∵AD平分∠CAN,CD平分∠ACM,
∴DN=DH,DH=DM
∴DN=DM
∴BD平分∠ABC
又∵∠ABC=90°,
∴∠PBC=45°,
过P作PG⊥PB,交BC于点G,如图,
∴∠PBG=∠PGB=45°
∴PB=PG
∵∠PCG+∠BAC=90°,∠E+∠BAC=90°
∴∠PCG=∠E
∵PE⊥AC
∴∠CPG+∠GPF=90°
又∵∠EPB+∠GPF=90°
∴∠CPG=∠EPB
在△PBE和△PGC中,
∴△PBE≌△PGC(AAS)
∴PE=PC
在△PCF和△PEA中,
∴△PCF≌△PEA(ASA)
∴CF=AE
设BF=x,则CF=AE=4-x,BE=AE-AB=2-x,
∵∠ACB=∠E,∠ABC=∠FBE=90°,
∴△ABC∽△FBE
∴
即,解得x=
∴CF=
∴
即S△PFC:S△PBF的值为.