题目内容
(2012•咸宁)如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC的长度是
210
210
cm.分析:首先过点B作BD⊥AC于D,根据题意即可求得AD与BD的长,然后由斜坡BC的坡度i=1:5,求得CD的长,继而求得答案.
解答:解:过点B作BD⊥AC于D,
根据题意得:AD=2×30=60(cm),BD=18×3=54(cm),
∵斜坡BC的坡度i=1:5,
∴BD:CD=1:5,
∴CD=5BD=5×54=270(cm),
∴AC=CD-AD=270-60=210(cm).
∴AC的长度是210cm.
故答案为:210.
根据题意得:AD=2×30=60(cm),BD=18×3=54(cm),
∵斜坡BC的坡度i=1:5,
∴BD:CD=1:5,
∴CD=5BD=5×54=270(cm),
∴AC=CD-AD=270-60=210(cm).
∴AC的长度是210cm.
故答案为:210.
点评:此题考查了解直角三角形的应用:坡度问题.此题难度适中,注意掌握坡度的定义,注意数形结合思想的应用与辅助线的作法.
练习册系列答案
相关题目