题目内容
【题目】如图,在中,,,是斜边上两点,且,若,,则的长为__.
【答案】
【解析】
过点B作边BC的垂线截取BF=DC=3,即可构造出两直角边分别为3和4,斜边为5的直角三角形,连接AF易证明△AFB≌△ADC,连接FE易证明△AFE≌△ADE,从而求得DE=EF=5,进而求得BC的长,再根据△ABC是等腰直角三角形,利用三角函数易求得AB的长.
解:如图过B作BC的垂线,垂足为B,并截取BF=CD,连接FE,AF.
∵∠FBE=90°,FB=3,BE=4
∴在Rt△FBE中,FE2=FB2+BE2=32+42=52
∴FE=5
又∵AB=AC,∠BAC=90°,
∴Rt△ABC是等腰直角三角形,
∴∠ABC=∠ACB=45°,
∴∠FBA=∠FBC-∠ABC=90°-45°=45°,
∴∠FBA=∠ACB,
在△AFB与△ADC中
∴△AFB≌△ADC(SAS)
∴∠2=∠3,AF=AD
又∵∠1+∠EAD+∠2=90°,
∴∠1+∠2=45°
∴∠FAE=∠1+∠3=∠1+∠2=45°
∴∠FAE=∠DAE
∴在△AFE与△ADE中
∴△AFE≌△ADE(SAS)
∴FE=DE=5
∴BC=BE+ED+DC=4+5+3=12
又∵在Rt△ABC中AB= BC cos∠ABC
即AB=12×cos45°=12=6.
故答案为:6.
【题目】某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆两种型号客车作为交通工具.
下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
型号 | 载客量 | 租金单价 |
30人/辆 | 380元/辆 | |
20人/辆 | 280元/辆 |
注:载客量指的是每辆客车最多可载该校师生的人数.设学校租用型号客车辆,租车总费用为元.
(1)求与的函数解析式,请直接写出的取值范围;
(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?