题目内容

已知反比例函数的解析式为y=数学公式(k≠1).
(1)在反比例函数图象的每一条曲线上,y随着x的增大而增大,求k的取值范围;
(2)在(1)的条件下点A为双曲线y=数学公式(x<0)上一点,AB∥x轴交直线y=x于点B,若AB2-OA2=4,求反比例函数的解析式.

解:(1)∵在双曲线的每个分支内,y随着x的增大而增大,
∴1-k<0,
∴k>1;
(2)点B在直线y=x上,设B(t,t),1-k=m(m≠0),
故双曲线解析式为y=(m≠0),
∵AB∥x轴,
∴A点的纵坐标为t,
把y=t代入y=得x=
∴A点坐标为(,t),
∴AB2=(t-2,OA2=(2+t2
∵AB2-OA2=4,
∴(t-2-[(2+t2]=4,解得:m=-2,
故1-k=-2,
∴反比例函数的解析式为y=
分析:(1)根据反比例函数的性质得到1-k<0,然后解不等式即可;
(2)设B(t,t),双曲线解析式为y=,利用AB∥x轴且A点在反比例函数图象上可得到A点坐标为(,t),然后利用勾股定理分别表示出AB2=(t-2,OA2=(2+t2,再利用AB2-OA2=4,得到方程(t-2-[(2+t2]=4,再解方程即可得到m的值,从而可确定反比例函数的解析式.
点评:题考查了反比例函数的综合题:反比例函数y=(k≠0)的图象为双曲线,当k<0,图象发布在第二、四象限,在双曲线的每个分支内,y随着x的增大而增大;掌握待定系数法求反比例函数解析式;运用勾股定理计算线段的长度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网