题目内容

如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(12,0)、(12,6),直线y=-x+b与y轴交于点P,与边OA交于点D,与边BC交于点E.
【小题1】若直线y=-x+b平分矩形OABC的面积,求b的值;
【小题2】在(1)的条件下,当直线y=-x+b绕点P顺时针旋转时,与直线BC和x轴分别交于点N、M,问:是否存在ON平分∠CNM的情况?若存在,求线段DM的长;若不存在,请说明理由;
【小题3】在(1)的条件下,将矩形OABC沿DE折叠,若点O落在边BC上,求出该点坐标;若不在边BC上,求将(1)中的直线沿y轴怎样平移,使矩形OABC沿平移后的直线折叠,点O恰好落在边BC上
p;【答案】
【小题1】∵直线y=-x+b平分矩形OABC的面积,∴其必过矩形的中心
由题意得矩形的中心坐标为(6,3),∴3=-×6+b
解得b=12 4分

【小题2】假设存在ON平分∠CNM的情况
①当直线PM与边BC和边OA相交时,过O作OH⊥PM于H
∵ON平分∠CNM,OC⊥BC,∴OH=OC=6
由(1)知OP=12,∴∠OPM=30°
∴OM=OP·tan30°=
当y=0时,由-x+12=0解得x=8,∴OD=8
∴DM=8- ···················· 6分
②当直线PM与直线BC和x轴相交时
同上可得DM=8+(或由OM=MN解得) 8分
【小题3】假设沿DE将矩形OABC折叠,点O落在边BC上O′处连结PO′、OO′,则有PO′=OP

由(1)得BC垂直平分OP,∴PO′=OO′
∴△OPO′为等边三角形,∴∠OPD=30°
而由(2)知∠OPD>30°
所以沿DE将矩形OABC折叠,点O不可能落在边BC上 ··········· 9分
设沿直线y=-x+a将矩形OABC折叠,点O恰好落在边BC上O′
连结P′O′、OO′,则有P′O′=OP′=a
由题意得:CP′=a-6,∠OPD=∠AO′O
在Rt△OPD中,tan∠OPD=
在Rt△OAO′中,tan∠AO′O=
,即,AO′=9
在Rt△AP′O′中,由勾股定理得:(a-6)2+92=a2
解得a=,12-

所以将直线y=-x+12沿y轴向下平移个单位得直线y=-x+,将矩形OABC沿直线y=-x+折叠,点O恰好落在边BC上    12分解析:
p;【解析】略
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网