题目内容
【题目】如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.当△AOD是等腰三角形时,求α的角度为______
【答案】110°、125°、140°
【解析】
先求出∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,②OA=OD,则∠OAD=∠ADO,③OD=AD,则∠OAD=∠AOD,分别求出α的角度即可.
解:∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,
则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,
∴b﹣d=10°,
∴(60°﹣a)﹣d=10°,
∴a+d=50°,
即∠DAO=50°,
分三种情况讨论:
①AO=AD,则∠AOD=∠ADO,
∴190°﹣α=α﹣60°,
∴α=125°;
②OA=OD,则∠OAD=∠ADO,
∴α﹣60°=50°,
∴α=110°;
③OD=AD,则∠OAD=∠AOD,
∴190°﹣α=50°,
∴α=140°;
所以当α为110°、125°、140°时,三角形AOD是等腰三角形,
故答案为:110°、125°、140°.
练习册系列答案
相关题目