题目内容
【题目】如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.
(1)求证:EF是⊙O的切线;
(2)求证:AC2=AD·AB;
(3)若⊙O的半径为2,∠ACD=300,求图中阴影部分的面积.
【答案】解:(1)证明:连接OC,
∵OA=OC,∴∠BAC=∠OCA。
∵∠DAC=∠BAC,∴∠OCA=∠DAC。∴OC∥AD。
∵AD⊥EF,∴OC⊥EF。
∵OC为半径,∴EF是⊙O的切线。
(2)证明:∵AB为⊙O直径,AD⊥EF,
∴∠BCA=∠ADC=90°。
∵∠DAC=∠BAC,∴△ACB∽△ADC。
∴。∴AC2=ADAB。
(3)∵∠ACD=30°,∠OCD=90°,∴∠OCA=60°.
∵OC=OA,∴△OAC是等边三角形。∴AC=OA=OC=2,∠AOC=60°。
∵在Rt△ACD中,AD=AC=1。
由勾股定理得:DC=,
∴阴影部分的面积是S=S梯形OCDA﹣S扇形OCA=×(2+1)×﹣。
【解析】
试题(1)连接OC,根据OA=OC推出∠BAC=∠OCA=∠DAC,推出OC∥AD,得出OC⊥EF,根据切线的判定推出即可。
(2)证△ADC∽△ACB,得出比例式,即可推出答案。
(3)求出等边三角形OAC,求出AC、∠AOC,在Rt△ACD中,求出AD、CD,求出梯形OCDA和扇形OCA的面积,相减即可得出答案。
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?
(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.