题目内容

问题背景:在△ABC中,AB、BC、AC三边的长分别为
5
10
13
,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶精英家教网点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上.
 

(2)画△DEF,DE、EF、DF三边的长分别为
2
8
10

①判断三角形的形状,说明理由.
②求这个三角形的面积.
分析:(1)利用恰好能覆盖△ABC的边长为3的小正方形的面积减去三个小直角三角形的面积即可解答;
(2)①利用勾股定理的逆定理进行解答,②利用(1)方法解答就可以解决问题.
解答:解:(1)如图,
精英家教网
S△ABC=3×3-
1
2
×3×1-
1
2
×2×1-
1
2
×3×2=3.5;

(2)①△DEF为直角三角形;
因为
2
2
+(
8
)
2
=(
10
)
2

所以△DEF为直角三角形;
②S△DEF=3×2-
1
2
×3×1-
1
2
×2×2-
1
2
×1×1=2;
答:△DEF的面积为2.
点评:此题考查勾股定理,勾股定理的逆定理以及三角形面积的计算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网