ÌâÄ¿ÄÚÈÝ
ÏÈÔĶÁ£¬ÔÙ½âÌâ
ÓÃÅä·½·¨½âÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©ÈçÏ£º
ÒÆÏµÃax2+bx=-c£¬
·½³ÌÁ½±ß³ýÒÔa£¬µÃx2+
x=-
·½³ÌÁ½±ß¼ÓÉÏ(
)2£¬µÃx2+
x+(
)2=-
+(
)2£¬¼´(x+
)2=
ÒòΪa¡Ù0£¬ËùÒÔ4a2£¾0£¬´Ó¶øµ±b2-4ac£¾0ʱ£¬·½³ÌÓÒ±ßÊÇÒ»¸öÕýÊý£¬ÕýÊýµÄƽ·½¸ùÓÐÁ½¸ö£¬Òò´Ë·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£»µ±b2-4ac=0ʱ£¬·½³ÌÓÒ±ßÊÇÁ㣬Òò´Ë·½³ÌÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£»µ±b2-4ac£¾0ʱ£¬·½³ÌÓÒ±ßÊÇÒ»¸ö¸ºÊý£¬¶ø¸ºÊýûÓÐƽ·½¸ù£¬Òò´Ë·½³ÌûÓÐʵÊý¸ù£®
ËùÒÔÎÒÃÇ¿ÉÒÔ¸ù¾Ýb2-4acµÄÖµÀ´ÅжϷ½³ÌµÄ¸ùµÄÇé¿ö£¬ÇëÀûÓÃÉÏÊöÂ۶ϣ¬²»½â·½³Ì£¬ÅбðÏÂÁз½³ÌµÄ¸ùµÄÇé¿ö£®
£¨1£©x2-14x+12=0 £¨2£©4x2+12x+9=0 £¨3£©2x2-3x+6=0 £¨4£©3x2+3x-4=0£®
ÓÃÅä·½·¨½âÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©ÈçÏ£º
ÒÆÏµÃax2+bx=-c£¬
·½³ÌÁ½±ß³ýÒÔa£¬µÃx2+
b |
a |
c |
a |
·½³ÌÁ½±ß¼ÓÉÏ(
b |
2a |
b |
a |
b |
2a |
c |
a |
b |
2a |
b |
2a |
b2-4ac |
4a |
ÒòΪa¡Ù0£¬ËùÒÔ4a2£¾0£¬´Ó¶øµ±b2-4ac£¾0ʱ£¬·½³ÌÓÒ±ßÊÇÒ»¸öÕýÊý£¬ÕýÊýµÄƽ·½¸ùÓÐÁ½¸ö£¬Òò´Ë·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£»µ±b2-4ac=0ʱ£¬·½³ÌÓÒ±ßÊÇÁ㣬Òò´Ë·½³ÌÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£»µ±b2-4ac£¾0ʱ£¬·½³ÌÓÒ±ßÊÇÒ»¸ö¸ºÊý£¬¶ø¸ºÊýûÓÐƽ·½¸ù£¬Òò´Ë·½³ÌûÓÐʵÊý¸ù£®
ËùÒÔÎÒÃÇ¿ÉÒÔ¸ù¾Ýb2-4acµÄÖµÀ´ÅжϷ½³ÌµÄ¸ùµÄÇé¿ö£¬ÇëÀûÓÃÉÏÊöÂ۶ϣ¬²»½â·½³Ì£¬ÅбðÏÂÁз½³ÌµÄ¸ùµÄÇé¿ö£®
£¨1£©x2-14x+12=0 £¨2£©4x2+12x+9=0 £¨3£©2x2-3x+6=0 £¨4£©3x2+3x-4=0£®
£¨1£©ÒòΪb2-4ac=£¨-14£©2-4¡Á12=148£¾0£¬ËùÒÔ£¬Ô·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù
£¨2£©ÒòΪb2-4ac=122-4¡Á4¡Á9=0£¬
ËùÒÔ£¬Ô·½³ÌÓÐÁ½¸öÏàµÈµÄʵÊý¸ù
£¨3£©ÒòΪb2-4ac=£¨-3£©2-4¡Á2¡Á6=-39£¼0£¬
ËùÒÔ£¬Ô·½³ÌÎÞʵÊý¸ù
£¨4£©ÒòΪb2-4ac=9+4¡Á3¡Á4=57£¾0£¬ËùÒÔ£¬Ô·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù
£¨2£©ÒòΪb2-4ac=122-4¡Á4¡Á9=0£¬
ËùÒÔ£¬Ô·½³ÌÓÐÁ½¸öÏàµÈµÄʵÊý¸ù
£¨3£©ÒòΪb2-4ac=£¨-3£©2-4¡Á2¡Á6=-39£¼0£¬
ËùÒÔ£¬Ô·½³ÌÎÞʵÊý¸ù
£¨4£©ÒòΪb2-4ac=9+4¡Á3¡Á4=57£¾0£¬ËùÒÔ£¬Ô·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿