题目内容
(2002•青海)若一次函数y=(2-m)x+m的图象经过第一、二、四象限时,则m的取值范围是 .
【答案】分析:根据图象在坐标平面内的位置关系确定m的取值范围,从而求解.
解答:解:由一次函数y=(2-m)x+m的图象经过第一、二、四象限,
可得函数y随x的增大而减小,与y轴交于正半轴,
∴2-m<0,且m>0,
则m的取值范围是m>2.
故答案为:m>2.
点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
解答:解:由一次函数y=(2-m)x+m的图象经过第一、二、四象限,
可得函数y随x的增大而减小,与y轴交于正半轴,
∴2-m<0,且m>0,
则m的取值范围是m>2.
故答案为:m>2.
点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
练习册系列答案
相关题目