题目内容

函数f(x)=
x2+1
+
(4-x)2+4
的最小值是______.
如图,作线段AB=4,AC⊥AB,DB⊥AB,且AC=1,BD=2,
对于AB上的任意一点O,令OA=x,则
OC=
x2+1
,OD=
(4-x)2+4

设点C关于AB的对称点为E,则DE与AB的交点即为点O.此时,OC+OD=OE+OD=DE,
作EFAB与DB的延长线交于F,
在Rt△DEF中,易知EF=AB=4,DF=3,
所以DE=5,
因此,函数f(x)=
x2+1
+
(4-x)2+4
的最小值是5.
故答案为:5.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网