题目内容
23、已知:如图,在直角坐标系中,⊙O1经过坐标原点,分别与x轴正半轴、y轴正半轴交于点A(3,0)、B(0,4).设△BOA的内切圆的直径为d,则d+AB的值为
7
.分析:根据勾股定理求得斜边AB的长,再根据直角三角形的内切圆的半径等于两条直角边的和与斜边的差的一半,进一步计算其内切圆的直径,从而求得结果.
解答:解:设△BOA的内切圆与OA、OB、AB分别切于点D、E、F,且半径为x.
∵∠AOB=90°,OA=3,0B=4,
∴AB=5.
∴OD=OE=x,BE=BF=4-x,AD=AF=3-x.
∴(4-x)+(3-x)=5.
解得x=1.
∴d+AB=2+5=7.
∵∠AOB=90°,OA=3,0B=4,
∴AB=5.
∴OD=OE=x,BE=BF=4-x,AD=AF=3-x.
∴(4-x)+(3-x)=5.
解得x=1.
∴d+AB=2+5=7.
点评:此题要熟记直角三角形的内切圆的半径计算方法:
直角三角形的内切圆的半径等于两条直角边的和与斜边的差的一半.
直角三角形的内切圆的半径等于两条直角边的和与斜边的差的一半.
练习册系列答案
相关题目