题目内容
计算:(1)
1999×2000×2001×2002+1 |
(2)
3-2
|
5-2
|
7-2
|
9-2
|
11-2
|
13-2
|
15-2
|
17-2
|
(3)
| ||||||
7+
|
(4)
| ||||||||
(
|
| ||||||||
(
|
| ||||||||
(
|
分析:(1)设n=1999,从而可将根号里面的数化为完全平方的形式,继而可得出答案.
(2)分别将各二次根式配方可得出答案.
(3)将分子及分母分别化简,然后运用提公因式的知识将分子及分母简化,继而得出答案.
(4)设
=a,
=b,
=c,从而可将原式化简,继而可得出答案.
(2)分别将各二次根式配方可得出答案.
(3)将分子及分母分别化简,然后运用提公因式的知识将分子及分母简化,继而得出答案.
(4)设
1997 |
1999 |
2001 |
解答:解:(1)设n=1999,则原式=
=
=n2+3n+1,
故原式=20002+1999;
(2)原式=
+
+
+
+
+
+
+
=
-1+
-
+
-
+
-
+
-
+
-
+
-
+
-
,
=
-1,
=3-1,
=2;
(3)原式=
,
=
,
=
+
,
=
-
;
(4)设
=a,
=b,
=c,
则原式=
+
+
,
=
,
=0.
n(n+1)(n+2)(n+3)+1 |
(n2+3n+1)2 |
故原式=20002+1999;
(2)原式=
(
|
(
|
(
|
(
|
(
|
(
|
(
|
(
|
=
2 |
3 |
2 |
4 |
3 |
5 |
4 |
6 |
5 |
7 |
6 |
8 |
7 |
9 |
8 |
=
9 |
=3-1,
=2;
(3)原式=
(
| ||||||||||||
|
=
(
| ||||||||
(
|
=
4 | ||||
|
1 | ||||
|
=
11 |
6 |
(4)设
1997 |
1999 |
2001 |
则原式=
a |
(a-b)(a-c) |
b |
(b-c)(b-a) |
c |
(c-a)(c-b) |
=
a(b-c)-b(a-c)+c(a-b) |
(a-b)(a-c)(b-c) |
=0.
点评:本题考查了二次根式的混合运算,难度较大,注意换元法及完全平方知识的运用.
练习册系列答案
相关题目
计算(
)2000×(1.5)1999×(-1)1999的结果是( )
2 |
3 |
A、
| ||
B、-
| ||
C、
| ||
D、-
|