题目内容

计算:
(1)
1999×2000×2001×2002+1

(2)
3-2
2
+
5-2
6
+
7-2
12
+
9-2
20
+
11-2
30
+
13-2
42
+
15-2
56
+
17-2
72

(3)
11
+5
7
+4
6
7+
77
+
66
+
42

(4)
1997
(
1997
-
1999
)(
1997
-
2001
)
+
1999
(
1999
-
1997
)(
1999
-
2001
)
+
2001
(
2001
-
1997)
(
2001
-
1999
)
分析:(1)设n=1999,从而可将根号里面的数化为完全平方的形式,继而可得出答案.
(2)分别将各二次根式配方可得出答案.
(3)将分子及分母分别化简,然后运用提公因式的知识将分子及分母简化,继而得出答案.
(4)设
1997
=a,
1999
=b,
2001
=c,从而可将原式化简,继而可得出答案.
解答:解:(1)设n=1999,则原式=
n(n+1)(n+2)(n+3)+1
=
(n2+3n+1)2
=n2+3n+1,
故原式=20002+1999;

(2)原式=
(
2
-1)
2
+
(
3
-
2
2
  
+
(
4
-
3
)
2
+
(
5
-
4
)
2
+
(
6
-
5
2
+
(
7
-
6
2
+
(
8
-
7
2
+
(
9
-
8
2

=
2
-1+
3
-
2
+
4
-
3
+
5
-
4
+
6
-
5
+
7
-
6
+
8
-
7
+
9
-
8

=
9
-1,
=3-1,
=2;

(3)原式=
(
11
+
7
)+4(
7
+
6
7
(
11
+
7
)+
6
(
11
+
7
)   

=
(
11
+
7
)+4(
7
+
6
)   
(
11
+
7
)(  
7
+
6

=
4
11
+
7
+
1
7
+
6

=
11
-
6


(4)设
1997
=a,
1999
=b,
2001
=c,
则原式=
a
(a-b)(a-c)
+
b
(b-c)(b-a)
+
c
(c-a)(c-b)

=
a(b-c)-b(a-c)+c(a-b)
(a-b)(a-c)(b-c)

=0.
点评:本题考查了二次根式的混合运算,难度较大,注意换元法及完全平方知识的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网