题目内容

(2012•徐汇区二模)如图,矩形ABCD中,AB=2,BC=4,点A、B分别在y轴、x轴的正半轴上,点C在第一象限,如果∠OAB=30°,那么点C的坐标是
(1+2
3
,2)
(1+2
3
,2)
分析:根据30°角所对的直角边等于斜边的一半求出OB的长度,然后过点C作CE⊥x轴于点E,根据直角三角形的性质求出∠CBE=30°,在Rt△BCE中求出CE、BE的长度,再求出OE的长度,即可得解.
解答:解:∵AB=2,∠OAB=30°,
∴OB=
1
2
AB=1,
在矩形ABCD中,∠ABC=90°,
∴∠OAB+∠ABO=90°,∠AB0+∠CBE=90°,
∴∠CBE=∠OAB=30°,
点C作CE⊥x轴于点E,
在Rt△BCE中,CE=
1
2
BC=
1
2
×4=2,BE=
BC2-CE2
=
42-22
=2
3

∴OE=OB+BE=1+2
3

∴点C的坐标是(1+2
3
,2).
故答案为:(1+2
3
,2).
点评:本题考查了矩形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,作辅助线构造出直角三角形是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网