题目内容

【题目】如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=

【答案】﹣1.

【解析】

试题分析:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0).

∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);

照此类推可得,C3顶点坐标为(5,1),A3(6,0);

C4顶点坐标为(7,﹣1),A4(8,0);

C5顶点坐标为(9,1),A5(10,0);

C6顶点坐标为(11,﹣1),A6(12,0);

∴m=﹣1.

故答案为:﹣1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网