题目内容

如图,已知P为∠AOB的边OA上的一点,以P为顶点的∠MPN的两边分别交射线OB于M、N两点,且∠MPN=∠AOB=α(α为锐角).当∠MPN以点P为旋转中心,PM边与PO重合的位置开始,按逆时针方向旋转(∠MPN保持不变)时,M、N两点在射线OB上同时以不同的速度向右平行移动.设OM=x,ON=y(y>x>0),△POM的面积为S.若sinα=,OP=2.
(1)当∠MPN旋转30°(即∠OPM=30°)时,求点N移动的距离;
(2)求证:△OPN∽△PMN;
(3)写出y与x之间的关系式;
(4)试写出S随x变化的函数关系式,并确定S的取值范围.

【答案】分析:(1)当PM旋转到PM′时,点N移动到点N′,点N移动的距离NN′=ON′-ON;
(2)已知两三角形两角对应相等,可利用AAA证相似
(3)可由(2)问的三角形相似得到y与x之间的函数关系式.
(4)根据图形得出S的关系式,然后在图形内根据x的取值范围确定S的取值范围.
解答:(1)解:∵sina=且a为锐角,
∴a=60°,即∠BOA=∠MPN=60°.(1分)
∴初始状态时,△PON为等边三角形,
∴ON=OP=2,当PM旋转到PM'时,点N移动到N',
∵∠OPM'=30°,∠BOA=∠M'PN'=60°,
∴∠M'N'P=30°.(2分)
在Rt△OPM'中,ON'=2PO=2×2=4,
∴NN'=ON'-ON=4-2=2,
∴点N移动的距离为2;                          (3分)

(2)证明:在△OPN和△PMN中,
∠PON=∠MPN=60°,∠ONP=∠PNM,
∴△OPN∽△PMN;                             (4分)

(3)解:∵MN=ON-OM=y-x,
∴PN2=ON•MN=y(y-x)=y2-xy.
过P点作PD⊥OB,垂足为D.
在Rt△OPD中,
OD=OP•cos60°=2×=1,PD=POsin60°=
∴DN=ON-OD=y-1.
在Rt△PND中,
PN2=PD2+DN2=(2+(y-1)2=y2-2y+4.(5分)
∴y2-xy=y2-2y+4,
即y=;                                  (6分)

(4)解:在△OPM中,OM边上的高PD为
∴S=•OM•PD=•x•x.(8分)
∵y>0,
∴2-x>0,即x<2.
又∵x>0,
∴x的取值范围是0<x<2.
∵S是x的正比例函数,且比例系数
∴0<S<×2,即0<S<.                (9分)
点评:此题是一个综合性很强的题目,主要考查等边三角形的性质、三角形相似、旋转的特征、解直角三角形、函数等知识.难度很大,有利于培养同学们钻研和探索问题的精神.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网