题目内容

(2013•营口)如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D.
(1)求证:AC平分∠BAD;
(2)若CD=1,AC=
10
,求⊙O的半径长.
分析:(1)连接OC.先由OA=OC,可得∠ACO=∠CAO,再由切线的性质得出OC⊥CD,根据垂直于同一直线的两直线平行得到AD∥CO,由平行线的性质得∠DAC=∠ACO,等量代换后可得∠DAC=∠CAO,即AC平分∠BAD;
(2)解法一:如图2①,过点O作OE⊥AC于E.先在Rt△ADC中,由勾股定理求出AD=3,由垂径定理求出AE=
10
2
,再根据两角对应相等的两三角形相似证明△AEO∽△ADC,由相似三角形对应边成比例得到
AE
AD
=
AO
AC
,求出AO=
5
3
,即⊙O的半径为
5
3
;解法二:如图2②,连接BC.先在Rt△ADC中,由勾股定理求出AD=3,再根据两角对应相等的两三角形相似证明△ABC∽△ACD,由相似三角形对应边成比例得到
AC
AD
=
AB
AC
,求出AB=
10
3
,则⊙O的半径为
5
3
解答:(1)证明:连接OC.
∵OA=OC,
∴∠ACO=∠CAO.
∵CD切⊙O于C,
∴OC⊥CD,
又∵AD⊥CD,
∴AD∥CO,
∴∠DAC=∠ACO,
∴∠DAC=∠CAO,
即AC平分∠BAD;

(2)解法一:如图2①,过点O作OE⊥AC于E.
在Rt△ADC中,AD=
AC2-DC2
=
(
10
)
2
-12
=3,
∵OE⊥AC,
∴AE=
1
2
AC=
10
2

∵∠CAO=∠DAC,∠AEO=∠ADC=90°,
∴△AEO∽△ADC,
AE
AD
=
AO
AC
,即
10
2
3
=
AO
10

∴AO=
5
3
,即⊙O的半径为
5
3

解法二:如图2②,连接BC.
在Rt△ADC中,AD=
AC2-DC2
=
(
10
)
2
-12
=3.
∵AB是⊙O直径,∴∠ACB=90°,
∵∠CAB=∠DAC,∠ACB=∠ADC=90°,
∴△ABC∽△ACD,
AC
AD
=
AB
AC

10
3
=
AB
10

∴AB=
10
3

AO=
1
2
AB
=
1
2
×
10
3
=
5
3

即⊙O的半径为
5
3
点评:本题考查了等腰三角形、平行线的性质,勾股定理,垂径定理,切线的性质,相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法及数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网