题目内容

如图,正方形ABCD的边长为4,点E是AB边上的一点,将△BCE沿着CE折叠至△FCE,若CF、CE恰好与正方形ABCD的中心为圆心的⊙O相切,则折痕CE的长为(  )
A.5
3
B.5C.
8
3
3
D.以上都不对

连接OC,则∠DCO=∠BCO,∠FCO=∠ECO,
∴∠DCO-∠FCO=∠BCO-∠ECO,即∠DCF=∠BCE,
又∵△BCE沿着CE折叠至△FCE,
∴∠BCE=∠ECF,
∴∠ECF=∠BCE=
1
3
∠BCD=30°,
在RT△BCE中,设BE=x,则CE=2x,
得CE2=BC2+BE2,即4x2=x2+42
解得BE=
4
3
3

∴CE=2x=
8
3
3

故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网