题目内容
【题目】如图,⊙O是△ABC的外接圆,AB是直径,OD⊥AC,垂足为D点,直线OD与⊙O相交于E,F两点,P是⊙O外一点,P在直线OD上,连接PA,PB,PC,且满足∠PCA=∠ABC
(1)求证:PA=PC;
(2)求证:PA是⊙O的切线;
(3)若BC=8,,求DE的长.
【答案】(1)详见解析;(2)详见解析;(3)DE=8.
【解析】
(1)根据垂径定理可得AD=CD,得PD是AC的垂直平分线,可判断出PA=PC;
(2)由PC=PA得出∠PAC=∠PCA,再判断出∠ACB=90°,得出∠CAB+∠CBA=90°,再判断出∠PCA+∠CAB=90°,得出∠CAB+∠PAC=90°,即可得出结论;
(2)根据AB和DF的比设AB=3a,DF=2a,先根据三角形中位线可得OD=4,从而得结论.
(1)证明∵OD⊥AC,
∴AD=CD,
∴PD是AC的垂直平分线,
∴PA=PC,
(2)证明:由(1)知:PA=PC,
∴∠PAC=∠PCA.
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAB+∠CBA=90°.
又∵∠PCA=∠ABC,
∴∠PCA+∠CAB=90°,
∴∠CAB+∠PAC=90°,即AB⊥PA,
∴PA是⊙O的切线;
(3)解:∵AD=CD,OA=OB,
∴OD∥BC,OD=BC==4,
∵,
设AB=3a,DF=2a,
∵AB=EF,
∴DE=3a﹣2a=a,
∴OD=4=﹣a,
a=8,
∴DE=8.
【题目】东坡商贸公司购进某种水果成本为20元/,经过市场调研发现,这种水果在未来48天的销售单价(元/)与时间(天)之间的函数关系式,为整数,且其日销售量()与时间(天)的关系如下表:
时间(天) | 1 | 3 | 6 | 10 | 20 | … |
日销售量() | 118 | 114 | 108 | 100 | 80 | … |
(1)已知与之间的变化符合一次函数关系,试求在第30天的日销售量;
(2)哪一天的销售利润最大?最大日销售利润为多少?
【题目】2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.
月份x | … | 3 | 4 | 5 | 6 | … |
售价y1/元 | … | 12 | 14 | 16 | 18 | … |
(1)求y1与x之间的函数关系式.
(2)求y2与x之间的函数关系式.
(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?