题目内容
已知:关于x的一元二次方程mx2-3(m-1)x+2m-3=0(m为实数)
(1)若方程有两个不相等的实数根,求m的取值范围;
(2)求证:无论m为何值,方程总有一个固定的根;
(3)若m为整数,且方程的两个根均为正整数,求m的值及方程所有的根.
(1)若方程有两个不相等的实数根,求m的取值范围;
(2)求证:无论m为何值,方程总有一个固定的根;
(3)若m为整数,且方程的两个根均为正整数,求m的值及方程所有的根.
分析:(1)先根据方程有两个不相等的实数根得出关于m的不等式,求出m的取值范围即可;
(2)由公式法得出方程的两个实数根即可作出判断;
(3)根据m为整数,且方程的两个根均为正整数,可知(2)中所求两根均为整数,得出符合条件的m的值即可.
(2)由公式法得出方程的两个实数根即可作出判断;
(3)根据m为整数,且方程的两个根均为正整数,可知(2)中所求两根均为整数,得出符合条件的m的值即可.
解答:解:(1)∵△=b2-4ac=[-3(m-1)]2-4m(2m-3)=(m-3)2,
∵方程有两个不相等的实数根,
∴(m-3)2>0且 m≠0,
∴m≠3且 m≠0,
∴m的取值范围是m≠3且 m≠0;
(2)证明:由求根公式x=
=
,
∴x1=
=
=2-
,x2=
=1
∴无论m为何值,方程总有一个固定的根是1;
(3)∵m为整数,且方程的两个根均为正整数,
∴x1=2-
必为整数,
∴m=±1或m=±3,
当m=1时,x1=-1(舍去);当m=-1时,x1=5;当m=3时,x1=1;当m=-3时,x1=3.
∴m=-1或m=±3.
∵方程有两个不相等的实数根,
∴(m-3)2>0且 m≠0,
∴m≠3且 m≠0,
∴m的取值范围是m≠3且 m≠0;
(2)证明:由求根公式x=
-b±
| ||
2a |
3(m-1)±(m-3) |
2m |
∴x1=
3m-3+m-3 |
2m |
2m-3 |
m |
3 |
m |
3m-3-m+3 |
2m |
∴无论m为何值,方程总有一个固定的根是1;
(3)∵m为整数,且方程的两个根均为正整数,
∴x1=2-
3 |
m |
∴m=±1或m=±3,
当m=1时,x1=-1(舍去);当m=-1时,x1=5;当m=3时,x1=1;当m=-3时,x1=3.
∴m=-1或m=±3.
点评:本题考查的是根与系数的关系、用公式法解一元二次方程,熟知以上知识是解答此题的关键.
练习册系列答案
相关题目