题目内容
【题目】如图,内接于圆,直径的长为2,过点的切线交的延长线于点.张老师要求添加条件后,编制一道题目,并解答.
(1)在添加条件,求的长,请你解答.
(2)以下是小明,小聪的对话:
小明:我加的条件是,就可以求出的长.
小聪:你这样太简单了,我加的条件是,连结,就可以证明与全等.参考此对话,在内容中添加条件,编制一道题目(可以添线、添字母),并解答.
【答案】(1),见解析;(2)见解析.
【解析】
(1)连接OC,如图,利用切线的性质得∠OCD=90°,再根据含30度的直角三角形三边的关系得到OD=2,然后计算OA+OD即可;
(2)添加∠DCB=30°,求AC的长,利用圆周角定理得到∠ACB=90°,再证明∠A=∠DCB=30°,然后根据含30度的直角三角形三边的关系求AC的长.
(1)连接OC,如图,
∵CD为切线,
∴OC⊥CD,
∴∠OCD=90°,
∵∠D=30°,
∴OD=2OC=2,
∴AD=AO+OD=1+2=3;
(2)添加∠DCB=30°,求AC的长,
∵AB为直径,
∴∠ACB=90°,
∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,
∴∠ACO=∠DCB,
∵∠ACO=∠A,
∴∠A=∠DCB=30°,
在Rt△ACB中,BC=AB=1,
∴AC=BC=.
练习册系列答案
相关题目