题目内容
【题目】如图,一次函数y=kx+1(k≠0)与反比例函数(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积?
【答案】解:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,∴一次函数解析式为y=x+1。
将A(1,2)代入反比例解析式得:m=2,
∴反比例解析式为。
(2)设一次函数与x轴交于D点,过点A作AE垂直于x轴于点E,
在y=x+1中,令y=0,求出x=﹣1,即OD=1。
∴A(1,2)。∴AE=2,OE=1。
∵N(3,0),∴到B横坐标为3。
将x=3代入一次函数得:y=4,
将x=3代入反比例解析式得:,
∴B(3,4),即ON=3,BN=4,C(3,),即CN=,
∴。
【解析】(1)将A坐标代入一次函数解析式中求出k的值,确定出一次函数解析式,将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例解析式;
(2)设一次函数与x轴交点为D点,过A作AE垂直于x轴,由△ABC面积=△BDN面积-△ADE面积-梯形AECN面积,求出即可。
练习册系列答案
相关题目