题目内容

已知函数y=x2与y=-x+1图象交点的横坐标就是一元二次方程y=x2+x-1的解,如图,抛物线y=x2+1与双曲线y=
k
x
的交点A的横坐标是1,则关于x的不等式
k
x
+x2+1<0的解集是
-1<x<0
-1<x<0
分析:把A点的横坐标1代入抛物线y=x2+1,求出点A的坐标,代入y=
k
x
中求的值,再求式
2
x
<-x2-1的解集,确定不等式
k
x
+x2+1<0的解.
解答:解:当x=1时,y=x2+1=2,
∴A(1,2);
k=xy=1×2=2,即y=
2
x

解方程
2
x
+x2+1=0,
实际就是求出y=
2
x
,与y=-x2-1,交点进而得出
2
x
<-x2-1的解集,
∵y=
2
x
,与y=-x2-1,交点横坐标为:x=-1,
由图象可知,不等式
2
x
<-x2-1的解集就是
k
x
+x2+1<0的解集,
得出:-1<x<0.
故答案为:-1<x<0.
点评:本题主要考查了二次函数与不等式的关系.关键是根据题意求反比例函数解析式,求出二次函数与反比例函数解析式和为0时x的值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网