题目内容

(2013•连云港)在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.
(1)求证:四边形BFDE为平行四边形;
(2)若四边形BFDE为菱形,且AB=2,求BC的长.
分析:(1)证△ABE≌△CDF,推出AE=CF,求出DE=BF,DE∥BF,根据平行四边形判定推出即可.
(2)求出∠ABE=30°,根据直角三角形性质求出AE、BE,即可求出答案.
解答:(1)证明:∵四边形ABCD是矩形,
∴∠A=∠C=90°,AB=CD,AB∥CD,
∴∠ABD=∠CDB,
∵在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,
∴∠ABE=∠EBD=
1
2
∠ABD,∠CDF=
1
2
∠CDB,
∴∠ABE=∠CDF,
在△ABE和△CDF中
∠A=∠C
AB=CD
∠ABE=∠CDF

∴△ABE≌△CDF(ASA),
∴AE=CF,
∵四边形ABCD是矩形,
∴AD=BC,AD∥BC,
∴DE=BF,DE∥BF,
∴四边形BFDE为平行四边形;

(2)解:∵四边形BFDE为为菱形,
∴BE=ED,∠EBD=∠FBD=∠ABE,
∵四边形ABCD是矩形,
∴AD=BC,∠ABC=90°,
∴∠ABE=30°,
∵∠A=90°,AB=2,
∴AE=
2
3
=
2
3
3
,BE=2AE=
4
3
3

∴BC=AD=AE+ED=AE+BE=
2
3
3
+
4
3
3
=2
3
点评:本题考查了平行四边形的判定,菱形的性质,矩形的性质,含30度角的直角三角形性质的应用,主要考查学生运用定理进行推理和计算的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网