题目内容
【题目】如图,点A是双曲线在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为 .
【答案】y=-
【解析】
试题解析:连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,
设A点坐标为(a,),
∵A点、B点是正比例函数图象与双曲线y=的交点,
∴点A与点B关于原点对称,
∴OA=OB
∵△ABC为等腰直角三角形,
∴OC=OA,OC⊥OA,
∴∠DOC+∠AOE=90°,
∵∠DOC+∠DCO=90°,
∴∠DCO=∠AOE,
∵在△COD和△OAE中
∴△COD≌△OAE(AAS),
∴OD=AE=,CD=OE=a,
∴C点坐标为(-,a),
∵-a=-4,
∴点C在反比例函数y=-图象上.
【题目】某同学在利用描点法画二次函数y=ax2+bx+c(a=0)的图象时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣3 | 0 | ﹣1 | 0 | 3 | … |
接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是( )
A.B.C.D.
【题目】某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间,经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数(间)与每间标准房的价格(元)的数据如下表:
(元) | … | 190 | 200 | 210 | 220 | … |
(间) | … | 65 | 60 | 55 | 50 | … |
(1)根据所给数据在坐标系中描出相应的点,并画出图象.
(2)求关于的函数表达式、并写出自变量的取值范围.
(3)设客房的日营业额为(元).若不考虑其他因素,问宾馆标准房的价格定为多少元时.客房的日营业额最大?最大为多少元?