题目内容
【题目】已知抛物线y=x2﹣(2m+1)x+m2+m,其中m是常数.
(1)求证:不论m为何值,该抛物线与z轴一定有两个公共点;
(2)若该抛物线的对称轴为直线x=,请求出该抛物线的顶点坐标.
【答案】(1)见解析;(2)顶点为(,﹣)
【解析】
(1)根据题意,由根的判别式△=b2﹣4ac>0得到答案;
(2)结合题意,根据对称轴x=﹣得到m=2,即可得到抛物线解析式为y=x2﹣5x+6,再将抛物线解析式为y=x2﹣5x+6变形为y=x2﹣5x+6=(x﹣)2﹣,即可得到答案.
(1)证明:a=1,b=﹣(2m+1),c=m2+m,
∴△=b2﹣4ac=[﹣(2m+1)]2﹣4×1×(m2+m)=1>0,
∴抛物线与x轴有两个不相同的交点.
(2)解:∵y=x2﹣(2m+1)x+m2+m,
∴对称轴x=﹣==,
∵对称轴为直线x=,
∴=,
解得m=2,
∴抛物线解析式为y=x2﹣5x+6,
∵y=x2﹣5x+6=(x﹣)2﹣,
∴顶点为(,﹣ ).
练习册系列答案
相关题目