题目内容

如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,连接BQ交AC于G,若AP=数学公式,Q为CD中点,则下列结论:
①∠PBC=∠PQD;②BP=PQ;③∠BPC=∠BQC;④正方形ABCD的面积是16;
其中正确结论的个数是


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1
A
分析:根据对角互补的四边形,则四边形共圆,根据圆周角定理得出∠BPC=∠BQC,根据∠PBC=∠PQD,过P作PM⊥AD于M,PE⊥AB于E,PF⊥DC于F,则E、P、F三点共线,推出正方形AEPM,根据勾股定理求出AE=PE=PM=AM=DF=1,证△BEP≌△PFQ,推出PE=FQ=1,BP=PQ,求出DQ、DC,即可.
解答:
∵四边形ABCD是正方形,
∴∠BCQ=90°,
∵PQ⊥PB,
∴∠BPQ=90°,
∴∠BPQ+∠BCQ=180°,
∴B、C、Q、P四点共圆,
∴∠PBC=∠PQD,∠BPC=∠BQC,∴①正确;③正确;
过P作PM⊥AD于M,PE⊥AB于E,PF⊥DC于F,则E、P、F三点共线,
∵四边形ABCD是正方形,
∴AB=AD=DC=BC,∠DAC=∠BAC,∠DAB=90°,
∴∠MAE=∠PEA=∠PMA=90°,PM=PE,
∴四边形AMPE是正方形,
∴AM=PM=PE=AE,
∵AP=
∴在Rt△AEP中,由勾股定理得:AE2+PE2=(2
解得:AE=AM=PE=PM=1,
∴DF=1,
设AB=BC=CD=AD=a,
则BE=PF=a-1,
∵∠BEP=∠PFQ=∠BPQ=90°,
∴∠BPE+∠EBP=90°,∠EPB+∠FPQ=90°,
∴∠EBP=∠FPQ,
在△BEP和△PFQ中

∴△BEP≌△PFQ(ASA),
∴PE=FQ=1,BP=PQ,∴②正确;
∴DQ=1+1=2,
∵Q为CD中点,
∴DC=2DQ=4,
∴正方形ABCD的面积是4×4=16,∴④正确;
故选A.
点评:本题考查了正方形的性质和判定,全等三角形的性质和判定,勾股定理,三角形的内角和定理等知识点,主要考查学生的推理能力,题目综合性比较强,有一定的难度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网