ÌâÄ¿ÄÚÈÝ
ÒÑÖª¶þ´Îº¯Êýy=(t+1)x2+2(t+2)x+£¬ÔÚx=0ºÍx=2ʱµÄº¯ÊýÖµÏàµÈ¡£
£¨1£©Çó¶þ´Îº¯Êý½âÎöʽ£»
£¨2£©ÈôÒ»´Îº¯Êýy=kx+6µÄͼÏñÓë¶þ´Îº¯ÊýµÄͼÏñ¶¼¾¹ýµãA£¨-3£¬m£©£¬ÇómºÍkµÄÖµ£»
£¨3£©Éè¶þ´Îº¯ÊýµÄͼÏóÓëxÖá½»ÓÚµãB£¬C£¨µãCÔÚµãB£¬CµÄ×ó²à£©£¬½«¶þ´Îº¯ÊýµÄͼÏóÔÚµãB£¬C¼äµÄ²¿·Ö£¨º¬µãCºÍµãC£©Ïò×óƽÒÆn(n>0)¸öµ¥Î»ºóµÃµ½µÄͼÏó¼ÇΪG£¬Í¬Ê±½«£¨2£©Öеõ½µÄÖ±Ïßy=kx+6ÏòÉÏƽÒÆn¸öµ¥Î»¡£Çë½áºÏͼÏó»Ø´ð£ºµ±Æ½ÒƺóµÄÖ±ÏßÓëͼÏóGÓй«¹²µãʱ£¬nµÄÈ¡Öµ·¶Î§¡£
£¨1£©Çó¶þ´Îº¯Êý½âÎöʽ£»
£¨2£©ÈôÒ»´Îº¯Êýy=kx+6µÄͼÏñÓë¶þ´Îº¯ÊýµÄͼÏñ¶¼¾¹ýµãA£¨-3£¬m£©£¬ÇómºÍkµÄÖµ£»
£¨3£©Éè¶þ´Îº¯ÊýµÄͼÏóÓëxÖá½»ÓÚµãB£¬C£¨µãCÔÚµãB£¬CµÄ×ó²à£©£¬½«¶þ´Îº¯ÊýµÄͼÏóÔÚµãB£¬C¼äµÄ²¿·Ö£¨º¬µãCºÍµãC£©Ïò×óƽÒÆn(n>0)¸öµ¥Î»ºóµÃµ½µÄͼÏó¼ÇΪG£¬Í¬Ê±½«£¨2£©Öеõ½µÄÖ±Ïßy=kx+6ÏòÉÏƽÒÆn¸öµ¥Î»¡£Çë½áºÏͼÏó»Ø´ð£ºµ±Æ½ÒƺóµÄÖ±ÏßÓëͼÏóGÓй«¹²µãʱ£¬nµÄÈ¡Öµ·¶Î§¡£
½â£º(1)ÓÉÌâÒâ¿ÉÖªÒÀ¶þ´Îº¯ÊýͼÏóµÄ¶Ô³ÆÖáΪ Ôò¡£ ¡à ¡à (2)¡ßÒò¶þ´Îº¯ÊýͼÏó±Ø¾¹ýµã ¡àÓÖÒ»´Îº¯ÊýµÄͼÏó¾¹ýµã ¡à£¬ ¡à (3) ÓÉÌâÒâ¿ÉÖª£¬µã¼äµÄ²¿·ÖͼÏóµÄ½âÎöʽΪ£¬ ÔòÏò×óƽÒƺóµÃµ½µÄͼÏóµÄ½âÎöʽΪ ´ËʱƽÒƺóµÄ½âÎöʽΪÓÉͼÏó¿ÉÖª£¬ ƽÒƺóµÄÖ±ÏßÓëͼÏóÓй«¹²µã£¬ÔòÁ½¸öÁÙ½çµÄ½»µãΪÓë Ôò ¡à |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿