题目内容
【题目】如图,以等腰△ABC的一腰AC为直径作⊙O,交底边BC于点D,过点D作腰AB的垂线,垂足为E,交AC的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)证明:∠CAD=∠CDF;
(3)若∠F=30°,AD=,求⊙O的面积.
【答案】(1)见解析;(2)见解析;(3)π
【解析】
(1)连接OD,AD,证点D是BC的中点,由三角形中位线定理证OD∥AB,可推出∠ODF=90°,即可得到结论;
(2)由OD=OC得到∠ODC=∠OCD,由∠CAD+∠OCD=90°和∠CDF+∠ODC=90°即可推出∠CAD=∠CDF;
(3)由∠F=30°得到∠DOC=60°,推出∠DAC=30°,在Rt△ADC中,由锐角三角函数可求出AC的长,推出⊙O的半径,即可求出⊙O的面积.
解:(1)证明:如图,连接OD,AD,
∵AC是直径,
∴∠ADC=90°,即AD⊥BC,
又AB=AC,
∴BD=CD,
又AO=CO,
∴OD∥AB,
又FE⊥AB,
∴FE⊥OD,
∴EF是⊙O的切线;
(2)∵OD=OC,
∴∠ODC=∠OCD,
∵∠ADC=∠ODF=90°,
∴∠CAD+∠OCD=90°,∠CDF+∠ODC=90°,
∴∠CAD=∠CDF;
(3)在Rt△ODF中,∠F=30°,
∴∠DOC=90°﹣30°=60°,
∵OA=OD,
∴∠OAD=∠ODA=∠DOC=30°,
在Rt△ADC中,
AC= ==2,
∴r=1,
∴S⊙O=π12=π,
∴⊙O的面积为π.
练习册系列答案
相关题目