题目内容
PA,PB,CD是⊙O的切线,A,B,E是切点,CD分别交PA,PB于C,D两点,若∠APB=40°,则∠COD的度数是( )
A、50° B、60° C、70° D、75°
【答案】
C.
【解析】
试题分析:画出图形如图:
连接OA、OC、OE、OD、OB,所得图形如下:
由切线性质得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,
∵AO=OE=OB,
∴△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),
∴∠AOC=∠EOC,∠EOD=∠BOD,
∴∠COD=∠AOB,
∵∠APB=40°,
∴∠AOB=140°,
∴∠COD=70°.
故选C.
考点: 切线的性质.
练习册系列答案
相关题目
如图,PA、PB、CD是⊙O的切线,A、B、E是切点,CD分别交线段PA、PB于C、D两点,若∠APB=40°,则∠COD的度数为( )
A、50° | B、60° | C、70° | D、75° |