题目内容
如图所示,在同一坐标系中,作出①y=3x2②y=x2③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号) .
【答案】分析:抛物线的形状与|a|有关,根据|a|的大小即可确定抛物线的开口的宽窄.
解答:解:①y=3x2,
②y=x2,
③y=x2中,二次项系数a分别为3、、1,
∵3>1>,
∴抛物线②y=x2的开口最宽,抛物线①y=3x2的开口最窄.
故依次填:①③②.
点评:抛物线的开口大小由|a|决定,|a|越大,抛物线的开口越窄;|a|越小,抛物线的开口越宽.
解答:解:①y=3x2,
②y=x2,
③y=x2中,二次项系数a分别为3、、1,
∵3>1>,
∴抛物线②y=x2的开口最宽,抛物线①y=3x2的开口最窄.
故依次填:①③②.
点评:抛物线的开口大小由|a|决定,|a|越大,抛物线的开口越窄;|a|越小,抛物线的开口越宽.
练习册系列答案
相关题目