题目内容
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标,并求出此时的周长;
(3)在直线l上是否存在点M,使△MAC为直角三角形?若存在,请写出所有符合条件的点M的坐标;若不存在,请说明理由.
(1)y=-x2+2x+3;(2)P(1,2),;(3).M(1,)(1,-)(1,1)(1,0).
【解析】
试题分析:(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可.
(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知:若连接BC,那么BC与直线l的交点即为符合条件的P点.
(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、②AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解.
试题解析:(1)将A(-1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得:
,解得:
∴抛物线的解析式:y=-x2+2x+3.
(2)y=-x2+2x+3的对称轴x=1,设点P为(1,p)
因为对称轴垂直平分AB,所以:PA=PB.
△PAC的周长=AC+PC+PA=AC+PC+PB
其中
当点B、P和C三点共线时,PC+PB存在最小值:
直线BC:y=-x+3,点P在直线BC上:p=-1+3=2
所以点P为(1,2),此时△PAC的周长最小值为
(3)抛物线的解析式为:x=-=1,设M(1,m),已知A(-1,0)、C(0,3),则:
MA2=m2+4,MC2=m2-6m+10,AC2=10;
①若MA=MC,则MA2=MC2,得:
m2+4=m2-6m+10,得:m=1;
②若MA=AC,则MA2=AC2,得:
m2+4=10,得:m=±;
③若MC=AC,则MC2=AC2,得:
m2-6m+10=10,得:m=0,m=6;
当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;
综上可知,符合条件的M点,且坐标为 M(1,)(1,-)(1,1)(1,0).
考点: 二次函数综合题.