题目内容

如图,在△ABC中,∠ACB=90º,AC>BC,分别以AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△BND、△CGM的面积分别为S1、S2、S3,则下列结论正确的是(    )

A.S1=S2=S3        B.S1=S2<S3           CS1=S3<S2       D.S2=S3<S1

 

【答案】

A.

【解析】

试题分析:设三角形的三边长分别为a、b、c,∵分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,∵AE=AB,∠ARE=∠ACB,∠EAR=∠CAB,∴△AER≌△ACB,∴ER=BC=a,FA=b,∴S1=,S3=,同理可得HD=AR=AC,∴S1=S2=S3=.故选A.

考点:1.解直角三角形;2.三角形的面积.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网