题目内容

【题目】矩形 与矩形 如图放置,点 共线,点共线,连接 ,取的中点 ,连接 . ,则的长为

A. B. C. D.

【答案】A

【解析】

延长GHAD于点P,先证APH≌△FGHAP=GF=1GH=PH=PG,再利用勾股定理求得PG=2,从而得出答案.

解:如图,延长GHAD于点P

∵四边形ABCD和四边形CEFG都是矩形,
∴∠ADC=ADG=CGF=90°AD=BC=3、GF=CE=1
ADGF
∴∠GFH=PAH
又∵HAF的中点,
AH=FH
APHFGH中,

∴△APH≌△FGHASA),
AP=GF=1GH=PH=PG
PD=AD-AP=3-1=2
CG=EF=3CD=1
DG=2DGP是等腰直角三角形,
GH=PG= ×

故选:A

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网